OK, here is an explicit proof working from the definition and only the definition.
We show $f$ continuous on $\Bbb R$. (We have to show it equivalently at any point.)
Let $a$ be a point in $\Bbb R$, we show the continuity in $a$.
We use as a notation $b$ for $b:=f(a)$.
Let us give us an $\epsilon$-ball around $b$, $\epsilon>0$ fixed now.
We may and do assume $\epsilon < 1$. (Else we replace it with $1$.)
(For it we have to find a $\delta>0$, so that for all $x$ at distance $<\delta$ from $a$ the mapped point $f(x)$ is at distance $\epsilon$ from $b$.) Note that we have the brute estimation:
$$
\begin{aligned}
|f(x)-f(a)|
&=
|\ (x^5+2x^3+3x^2+6)-(a^5+2a^3+3a^2+6)\ |
\\
&\le |x^5-a^5|+2|x^3-a^3|+3|x^2-a^2|
\\
&=|x-a|\;|x^4+x^3a+x^2a^2+xa^3+a^4|
\\
&\qquad+2|x-a|\;|x^2+xa+a^2|
\\
&\qquad\qquad+3|x-a|\;|x+a|
\\
&\le
|x-a|\;\Big( \ |x|^4+|x|^3|a|+|x|^2|a|^2+|x||a|^3+|a|^4\ \Big)
\\
&\qquad+2|x-a|\Big(\ |x|^2+|x||a|+|a|^2\ \Big)
\\
&\qquad\qquad+3|x-a|\Big(\ |x|+|a|\ \Big)
\\
&\le |x-a|\Big(\ (|x|+|a|)^4+2(|x|+|a|)^2+3(|x|+|a|)\ \Big)
\\
&\le |x-a|\underbrace{\Big(\ (|a|+1+|a|)^4+2(|a|+1+|a|)^2+3(|a|+1+|a|)\ \Big)}
_{=:M}\ .
\end{aligned}
$$
We use now the constant $M>0$ from above to define $\delta:=\epsilon/M$.
Let now $x$ be so that $|x-a|<\delta$.
Then we have $|f(x)-f(a)|\le M\; |x-a|<M\delta=\epsilon$.
$\square$