Evaluate $\int{x^{2} \sqrt{a^{2} + x^{2}} d x}$ using inverse substitution.
Let $x=a \sinh{\left(u \right)}$
Then $dx=\left(a \sinh{\left(u \right)}\right)^{\prime }du = a \cosh{\left(u \right)} du$
$$\int{x^{2} \sqrt{a^{2} + x^{2}} d x} = \int{a^{2} \sqrt{a^{2} \sinh^{2}{\left( u \right)} + a^{2}} \sinh^{2}{\left( u \right)}a \cosh{\left(u \right)} du}$$
Use the identity: $$\sinh^{2}{\left( u \right)} + 1 = \cosh^{2}{\left( u \right)}$$
Therefore, $$\int{x^{2} \sqrt{a^{2} + x^{2}} d x} = \int{a^{4} \sinh^{2}{\left( u \right)}\cosh^{2}{\left(u \right)} du}$$
Use the double angle formula: $$\sinh{\left( 2u \right)} = 2\sinh{\left( u \right)}\cosh{\left(u \right)}$$