Let A be a diagonalizable matrix and $\lambda$ an eigenvalue of A $\DeclareMathOperator{\rank}{rank}$ Show that $$\rank(\lambda I - A)= \rank((\lambda I - A )^2)$$
Iam not sure whether this is allowed but i tried premultiplying by P and P^{-1} such that
$$\rank(P(\lambda I - A)P^{-1})= \rank(\lambda PIP^{-1} -PAP^{-1}) $$
but is this even correct?
P^{-1}. – parsiad Oct 31 '19 at 15:19