1

Theorem (*): Let $f(x)$ be differentiable , monotonic function, $f^{-1}(x)$ is inverse function of $f(x)$ and knowning that $\int f(x) dx= F(x)+C$. Prove that $$\int f ^{-1} (x) dx= xf ^{-1} (x)+ F(f ^{-1}(x))+C$$

Example: Calculate $ \displaystyle \int \dfrac{1-\sqrt{1-x^2}}{x}dx$ where $x\in[-1,1]$

Solution. Consider $f(x)=\dfrac{2x}{x^2+1}$ be differentiable ,monotonic function on $[-1,1]$ and $ \displaystyle \int \dfrac{2x}{x^2+1}dx=\ln (x^2+1)+C$

We have $f^{-1}(x)= \dfrac{1-\sqrt{1-x^2}}{x}$, by (*) we get

$$ \displaystyle \int \dfrac{1-\sqrt{1-x^2}}{x}dx$$ $$ =x\cdot \left(\dfrac{1-\sqrt{1-x^2}}{x}\right)-\ln \left(\left(\dfrac{1-\sqrt{1-x^2}}{x}\right)^2+1 \right)+C$$

Question: I just think how we can solve the following generaztion: Let $f(x)$ be differentiable , monotony function, $g(x)$ is reflected function of $f(x)$ through line $ax+by+c=0$ and knowning that $\int f(x) dx= F(x)+C$. Computer $\int g(x) dx$

An other similar question posted in Integral of reflected function

Thank you in advance!

nam
  • 347
  • 1
  • 3

1 Answers1

1

Take the derivative of the right hand side:

$$\Bigr(xf^{-1}(x) + F\left(f^{-1}(x)\right)\Bigr)' = f^{-1}(x) + x\left(f^{-1}\right)'(x) + F'\left(f^{-1}(x)\right)\left(f^{-1}\right)'(x)$$

$$ = f^{-1}(x) + x\left(f^{-1}\right)'(x) + x\left(f^{-1}\right)'(x) \neq f^{-1}(x)$$

since $F'\left(f^{-1}(x)\right) = f\left(f^{-1}(x)\right) = x$.

So your theorem is incorrect. But it would be true if we subtracted the second term instead of added.

Ninad Munshi
  • 37,891