Yes: If $(x_n)$ is bounded and $\lim_{n \to \infty}\Delta^2 x_n = 0$ then $\lim_{n \to \infty}\Delta x_n = 0$. That is a consequence of the following general estimate:
If $(x_n)$ is a sequence with $|x_n| \le M$ and $|\Delta^2 x_n| \le K$ for all $n$ then
$$ \tag{*}
|\Delta x_n|^2 \le 4MK \, .
$$ for all $n$.
In our case $\lim_{n \to \infty}\Delta^2 x_n=0$, so that the above can be applied to tail sequences $(x_n)_{n \ge n_0}$ with $K$ arbitrarily small, and $\lim_{n \to \infty}\Delta x_n=0$ follows.
Proof of the claim. It suffices to prove $(*)$ for $n=0$. Without loss of generality assume that $\Delta x_0 \ge 0$. We have
$$
x_n = x_0 + \sum_{j=0}^{n-1} \Delta x_j
= x_0 + \sum_{j=0}^{n-1} \left( \Delta x_0 + \sum_{k=0}^{j-1} \Delta^2 x_k \right) \\
= x_0 + n \Delta x_0 + \sum_{j=0}^{n-1}\sum_{k=0}^{j-1} \Delta^2 x_k \, .
$$
Using the given bounds $-M \le x_n \le M$ and $\Delta^2 x_n \ge -K$ it follows that
$$
M \ge -M + n \Delta x_0 - \frac{(n-1)n}{2}K \\
\implies 0 \le \frac{(n-1)n}{2}K - n \Delta x_0 + 2M
$$
If $K=0$ then $0 \le \Delta x_0 \le 2M/n$ implies $\Delta x_0 = 0$, and we are done. Otherwise the quadratic inequality can be rearranged (by “completing the square”) to
$$
0 \le \left(n - \left(\frac{\Delta x_0}{K} + \frac 12 \right) \right)^2
+ \frac{4M}{K} - \left(\frac{\Delta x_0}{K} + \frac 12 \right)^2 \, .
$$
Now choose the non-negative integer $n$ such $\left| n - \left(\frac{\Delta x_0}{K} + \frac 12 \right) \right| \le \frac 12$. Then
$$
0 \le \frac 14 + \frac{4M}{K} - \left(\frac{\Delta x_0}{K} + \frac 12 \right)^2 = \frac{4M}{K} - \left(\frac{\Delta x_0}{K} \right)^2 - \frac{\Delta x_0}{K} \\
\le \frac{4M}{K} - \left(\frac{\Delta x_0}{K} \right)^2
$$
and the desired conclusion $(*)$ follows.
Remarks: There is a “similar” inequality for differentiable functions:
Let $f: \Bbb R \to \Bbb R$ be twice differentiable. Then $$ \tag{**}\sup_{x \in \Bbb R} \left| f'\left( x\right) \right| ^{2}\le 4\sup_{x \in \Bbb R} \left| f\left( x\right) \right| \sup_{x \in \Bbb R} \left| f''\left( x\right) \right|$$
which goes back to Edmund Landau. See
The proofs resemble each other: We have
$$
f(t) = f(0) + t f'(0) + \int_{u=0}^t \int_{v=0}^u f''(v) \, dv
$$
which implies
$$
0 \le \frac{t^2}2 \sup_{x \in \Bbb R} \left| f''\left( x\right) \right| - t f'(0) + 2 \sup_{x \in \Bbb R} \left| f\left( x\right) \right| \, .
$$
Then $t$ is chosen such that the right-hand side is minimal. The same is done in above prove for sequences, only that $n$ is restricted to integers and cannot be chosen arbitrarily.
Landau also proved that the factor $4$ in $(**)$ is best possible. It would be interesting to know if $4$ is also the best possible factor for sequences in $(*)$.