Let $Y$ be locally connected and $A \subset Y$ arbitrary. Let $C$ be a component of $A$. Prove: a. $Int(C)= C \cap Int(A)$ b. $Fr(C) \subset Fr(A)$ c. If $A$ is closed, then $Fr(C)=C \cap Fr(A)$
My atempt:
b. For a. $$Fr(C)=\overline{C} - Int(C)= C \cap (C \cap Int(A))^c = C \cap (C^c \cup Int(A)^c)= C - Int(A) \subset A - Int(A) \subset \overline{A} - Int(A)= Fr(A)$$
Help me a. and c. Please.