The series 2[$\frac{1}{3x+1}$ + $\frac{1}{3(3x+1)^3}$ + $\frac{1}{5(3x+1)^5}$ + ...] is equal to
Asked
Active
Viewed 126 times
0
-
Have you tried anything so far? – Toby Mak Oct 11 '19 at 05:34
3 Answers
4
We know that $$\ln\left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^3}{3}+\frac{x^5}{5}+\ldots\right)$$
Putting $x=\frac{1}{3x+1}$; $$\ln\left(1+\frac{2}{3x}\right)=2\left(\frac{1}{3x+1} + \frac{1}{3(3x+1)^3} + \frac{1}{5(3x+1)^5} + \ldots\right)$$
user712576
- 555
- 3
- 10
1
Use What is the correct radius of convergence for $\ln(1+x)$?
for $-1<y<1$
$$\ln(1+y)-\ln(1-y)=2\left(\sum_{r=0}^\infty\dfrac{y^{2r+1}}{2r+1}\right)$$
lab bhattacharjee
- 279,016
0
The Taylor series for $\tan^{-1} x$ is:
$$x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots + (-1)^{n} \frac{x^{2n+1}}{2n+1}$$
Now use the fact that $\tanh^{-1} x = \frac{1}{i} \tan^{-1} (ix)$. (Wolfram MathWorld)
Toby Mak
- 17,073