I'm struggling to prove symmetry for the railway metric.
Let $d:\mathbb{R}^{2}\times\mathbb{R}^{2}\rightarrow[0,\infty)$
$$d(x,y)=\begin{cases}\|x-y||&\text{ if }x,y,0\text{ are collinear}.\\\|x−0||+\|0-y||&\text{ otherwise}.\end{cases}$$
I have managed to show $d(x,y)=\|x-y\|=\|x-x\|=\|0\|=0.$