I've followed the following lemma, i.e. Borel-Cantelli lemma.
Borel-Cantelli
Let $A_i \in \mathcal{A}, i \in \mathbb{N}$. Then, $\sum_{i = 1}^{\infty} \mathbb{P} (A_i) \Rightarrow \mathbb{P}(\cap_{n \in \mathbb{N}} \cup_{m \geq n} A_m) = 0$
In order to prove the Borel-Cantelli lemma, I followed the way given below:
Since
$\cup_{m \geq n} \ A_m \searrow \cap_{n \in \mathbb{N}} \cup_{m \geq n} A_m$ as ${n \rightarrow \infty}$
the continuity from above of $\mathbb{P}$ implies that $\mathbb{P}(\limsup_{n \rightarrow \infty} A_n) = \lim_{n \rightarrow \infty} \mathbb{P}(\cup_{m \geq n } A_m) \leq \lim_{n \rightarrow \infty} \sum_{m=n}^{\infty} \mathbb{P} (A_m) = 0$
since $\sum_{m=1}^{\infty}\mathbb{P}(A_m) < \infty$.
I'm stuck at the last part:
$\sum_{m=1}^{\infty}\mathbb{P}(A_m) < \infty$ implies that $\lim_{n \rightarrow \infty}\sum_{m=n}^{\infty} \mathbb{P} (A_m) = 0$
I can guess the result from (a kind of) insight, but I cannot find some "clear" ways to understanding the last part where I'm stuck.
Anyone can answer my question? :)