I know the two definitions for continuity, (sequential and epsilon-delta)
Given $x_0 \in D, \forall \epsilon > 0, \exists \delta > 0, |x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \epsilon $
and
f is continuous if $\forall x_n \rightarrow x_0 $ implies $f(x_n) \rightarrow f(x_0)$
Now the definition of $\lim_{x \rightarrow x_0} f(x) = L$ is $$\forall \epsilon > 0, \exists \delta > 0 |x - x_0| < \delta \rightarrow |f(x)-L| < \epsilon$$
So are the two $\epsilon-\delta$ definitions the same? ie $\lim_{x \rightarrow x_0} f(x) = L$ implies $f$ is continuous at $x_0$? I want to make sure.