The question is to prove that there are infinitely many triangular numbers $T_n$ where $2 \times T_n$ is also a triangular number, and give the first few as an example.
My attempt:
$$2 \cdot {x(x+1) \over 2} = {y(y+1) \over 2} \\ \Leftrightarrow {x(x+1)} = {y(y+1) \over 2} \\ \Leftrightarrow 2x^2 + 2x = y^2 + y \\ \Leftrightarrow 4x^2 + 4x = 2y^2 + 2y \\ \Leftrightarrow 4x^2 + 4x +1= 2y^2 + 2y +1\\ \Leftrightarrow (2x +1)^2= 2y^2 + 2y +1\\ \Leftrightarrow 2(2x +1)^2= 4y^2 + 4y +2\\ \Leftrightarrow 2(2x +1)^2= (2y +1)^2 + 1\\ \Leftrightarrow Y^2 - 2X^2 = -1, \quad X=(2x+1) \text{ and } Y=(2y + 1)\\ $$
This is Pell's equation in 2 variables, and I obtained $(1, 1)$ and $(7, 5)$ as 2 solutions. However, I'm unable to prove infinite of them. I know that this is a very famous Pell equation, but I haven't been able to find good answers as to how the recurrence is established, firstly between $X$ and $Y$, and then between $x$ and $y$. I know that there exists one, which I obtained from this diophantine equation solver, but I don't understand the solution given there.
Can anyone please help me derive the recurrence relation?