Good night, I'm trying to solve this exercise:
Let $\mathcal M_n (\mathbb R)$ be the set of all square matrices of order $n$. Show that $\langle A,B \rangle := \operatorname {tr} (A^T B)$ is an inner product on $\mathcal M_n (\mathbb R)$ such that $\|AB\| \le \|A\| \|B\|$.
Could you please verify if my proof of $\|AB\| \le \|A\| \|B\|$ looks fine or contains logical gaps/errors? Thank you so much for your help!
My attempt:
We have $$\|A\|^2 = \operatorname {tr} (A^T A) =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2$$
As such,
$$\begin{align} \|AB\|^2 &=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\sum_{k=1}^n a_{ik} b_{kj} \right)^2 &&\le \sum_{i=1}^{n} \sum_{j=1}^{n} \left [ \left(\sum_{k=1}^n a_{ik}^2 \right ) \left (\sum_{k=1}^n b_{kj}^2 \right) \right ] \\ &=\sum_{i=1}^{n} \left[ \left ( \sum_{k=1}^n a_{ik}^2 \right ) \cdot \left (\sum_{j=1}^{n} \sum_{k=1}^n b_{kj}^2 \right ) \right ] &&= \left (\sum_{j=1}^{n} \sum_{k=1}^n b_{kj}^2 \right ) \cdot \left( \sum\limits_{i=1}^{n} \sum_{k=1}^n a_{ik}^2 \right ) \\ &=\|B\|^2 \|A\|^2 &&=\|A\|^2 \|B\|^2 \end{align}$$