Find an example of a unital commutative ring $R$ and an $R$-module $M$ such that $\text{Ass}(M)=\emptyset$.
Recall that
- $\text{Ass}(M)=\{p\in\text{spec}(R):\exists 0\ne m\in M:\text{ann}(m)=p\}$.
- $\text{ann}(m)=\{r\in R:rm=0\},\forall m\in M$.
I thought of $R=\mathbb Z$ and $M=\mathbb Z/n\mathbb Z$, which doesn't work.