I found the following formula on Wikipedia:
Suppose $A$, $B$, $C$, and $D$ are matrices of dimension $n \times n$, $n \times m$, $m \times n$, and $m \times m$, respectively.
$$\det \begin{pmatrix} A & B \\ C & D\end{pmatrix} = \det(D) \det \left(A - B D^{-1} C \right)$$
Hence, if $D$ is a zero matrix, the determinant should be zero. But when I calculate the determinant of the following matrix
$$\det \left[ \begin {array}{ccc|ccc} 0&0&0&-4&0&0\\ 0&-1&0 &0&-5&0\\ 0&0&-2&0&0&-6\\ \hline 7&0&0&0&0 &0\\ 0&8&0&0&0&0\\ 0&0&9&0&0&0 \end {array} \right] = 60480 $$
Is this formula above really only applicable, when $n\neq m$?