For given function, $$f(x) = \begin{cases} 1, & |x|\leq\frac{\pi}{2} \\ 0, & \pi\geq|x|>\frac{\pi}{2} \\ \end{cases}$$
The calculated Fourier series is:
$$\begin{align} a_0 &= \frac{1}{\pi}\int\limits_{-\pi/2}^{\pi/2}1 \ dx=1 \\ a_n &= \frac{1}{\pi}\int\limits_{-\pi/2}^{\pi/2}1\cdot \cos(nx) \ dx=\frac{2\sin(\frac{\pi n}{2})}{n\pi} \\ b_n &= \frac{1}{\pi}\int\limits_{-\pi/2}^{\pi/2}1\cdot \sin(nx) \ dx=0 \\ f(x) &= \frac{1}{2}+\frac{1}{\pi}\sum\limits_{n=1}^{\infty}\frac{2\cdot (-1)^n}{n}\cos(nx) \end{align}$$
And how to determine the type of convergence, to be $L^2$-convergence, pointwise convergence or uniform convergence?