$\int e^{2\theta}\sin(3\theta)d\theta$ seems to be leading me in circles. The integral I get when I use integration by parts, $\int e^{2\theta}\cos(3\theta)d\theta$ just leads me back to $\int e^{2\theta}\sin(3\theta)d\theta$. I am not sure how to solve it.
My Steps:
$\int e^{2\theta}\sin(3\theta)d\theta$
Let $u = \sin(3\theta)$ and $dv=e^{2\theta}d\theta$
Then $du = 3\cos(3\theta)d\theta$ and $v = \frac{1}{2}e^{2\theta}$ \begin{align*} \int e^{2\theta} \sin(3 \theta)d\theta &= \frac{1}{2} e^{2\theta}\sin(3\theta) - \int\frac{1}{2}e^{2\theta}3\cos(3\theta)d\theta\\ &=e^{2\theta}\sin(3\theta) - \frac{3}{2}\int e^{2\theta}\cos(3\theta)d\theta\\ \end{align*}
$\int e^{2\theta}\cos(3\theta)d\theta$
Let $u = \cos(3\theta)$ and $dv = e^{2\theta}d\theta$
Then $du = -3\sin(3\theta)d\theta$ and $v=\frac{1}{2}e^{2\theta}$
\begin{align*} \int e^{2\theta}\cos(3\theta) &= \frac{1}{2}e^{2\theta}\cos(3\theta)-\int (\frac{1}{2}e^{2\theta}\cdot-3\sin(3\theta))d\theta\\ &=\frac{1}{2}e^{2\theta}\cos(3\theta)+ \frac{3}{2} \int e^{2\theta}\sin(3\theta)d\theta \end{align*}
So you can see I just keep going in circles. How can I break out of this loop?