Assumption: There exsits $F$ which is a subfield of $\mathbb{C}$ such that $F\subsetneq \mathbb{Q}$.
Claim: $\mathbb{Z}\subset F$.
Proof: Let $m \in \mathbb{Z^+ }$. We know, that $1 \in F$. Taking $\displaystyle\underbrace{1+1+1+...+1}_{m \text{ times}}=m.1=m\in F$.Again, $F$ being a field, for any $m \in F \implies -m \in F$. And $0\in F$ is trivial.
Hence, $ m\in \mathbb{Z} \implies m \in F \implies $ $\mathbb{Z}\subset F$.
Now, by assumption, $\exists \ w\in \mathbb{Q}$ such that $w\ \notin F $. Now, $w=p/q=pq^{-1}$ for some $p, q \in \mathbb{Z}$, with $q \neq 0$.
As per our proven claim, $p, q \in F$. Again, $F$ being a field, $w=pq^{-1}\in F$. A contradiction.
Hence, $\mathbb{Q} \subseteq F $, for any subfield $F$ of $\mathbb{C}$.
Is this correct? Kindly verify.