Let
p(x1,x2) = $\dfrac {4}{10}\mathcal{N}\left( \begin{bmatrix} 10 \\ 2 \end{bmatrix},\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) + \dfrac {6}{10} \mathcal{N}\left( \begin{bmatrix} 0 \\ 0 \end{bmatrix},\begin{bmatrix} 8.4 & 2.0 \\ 2.0 & 1.7 \end{bmatrix}\right)$ be a mixture of two gaussians.
a. Compute the marginal distributions for each dimension.
b. Compute the mean, mode and median for each marginal distribution.
c. Compute the mean and mode for the two-dimensional distribution.
I find this problem confusing, my approach for a.) I've used the fact p(x1) = $\mathcal{N}\left(x1|\mu_{x1},\sum _{11} \right)$
and a formula for the 1-D mixture: $p\left( x\right) =\alpha p_{1}\left( x\right) +\left( 1-\alpha\right) p_{2}\left( x\right)$
$\mu _{x}=\alpha\mu _{1}+ \left( 1-\alpha\right) \mu_{2}$ and $\sigma = \alpha \left( \mu ^{2}_{1} + \sigma^{2}_{1} \right) + (1-\alpha)\left( \mu ^{2}_{2} + \sigma^{2}_{2} \right)$
to achieve $\mu_{x1} = 4/10.10+0.6.0 = 4 $
and $\sum _{11} = 0.4(10^{2}+1) + 6/10(0+8.4^{2})$ =82.736
and similarly $\mu_{x2} = 0.8$ and $\sum _{22} = 3.734$
for part b) the mean mode and median should be the mean?
and part c) p(x1,x2) = $\mathcal{N}\left( \begin{bmatrix} \mu_{x1} \\ \mu_{x2} \end{bmatrix},\begin{bmatrix} \sum _{11} & \sum _{12} \\ \sum _{21} & \sum _{22} \end{bmatrix}\right)$ where I need to calculate the covariances.
I am sure this approach is not correct, any help would be appreciated as this problem is completely different to the others I have been working through.

