-4

let $x_n=\sqrt{1+\sqrt{2+\sqrt{3+....+\sqrt{n}}}}$ prove that $x_{n+1}^2 \leq 1+\sqrt{2}x_n$ and $x_n$ converges find an equivalent to $x_n$

Mike
  • 309

1 Answers1

0

To prove the inequality you just square $x_{n+1}$ like that:

$x_{n+1}^2=1+\sqrt{2+\sqrt{3+\dots \sqrt{n+1}}}$.

Now you use the simple fact, that

$\sqrt{2}\sqrt{1+\sqrt{2+\dots}}=\sqrt{2+2\sqrt{2\dots}}=\sqrt{2+\sqrt{8+\dots}}$

and you derive at the inequality.

You should take a look at How can I show that $\sqrt{1+\sqrt{2+\sqrt{3+\sqrt\ldots}}}$ exists?