On a finite measure space, prove that $\Vert f \Vert_p \leq \mu(E)^{1-\frac 1p} \Vert f \Vert_\infty$ for any $f \in \mathcal{L}^\infty(E)$ and $\mu(E) < \infty$, $1\leq p < \infty$.
I managed to prove the following statement for finite measure spaces for $1 \leq p < r < \infty$, $f \in \mathcal{L}^r(E) \Rightarrow f \in \mathcal{L}^p(E)$ and that $\Vert f \Vert_p \leq \mu(E)^{\frac 1p - \frac 1r} \Vert f \Vert_r$ where $\mu(E) < \infty$. (Used Holders)
I wanted to know how if I can use this result to prove the given statement.
Any help is appreciated.