Worth knowing: Shanks baby-giant step computes orders in a group knowing only an order bound. Here it takes less than a minute of trivial mental arithmetic - only doubling & tripling $\!\!\bmod 59,\,$ viz.
$\qquad\,\ \begin{array}{c | c } r & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline
11^{\large r}\! & 1 & 11 & 3 & 33 & 9 & \color{#0af}{40} & 27 & \color{#c00}2 \end{array}\ $ via $\ 11^{\large\color{} 2}\equiv 3\,$ so $\!\!\begin{align}&\ \ 1\to \ \ 3\to\ 9\, \ldots\\ &\ \ \ \ \ \ 11\to 33\to 99\!\equiv\! \color{0af}{40}\,\ldots\end{align}$
$\qquad\ \ \, \begin{array}{c | c } q & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline
\color{#c00}2^{\large q} & 2 & 4 & 8 & 16 & 32 & 5 & 10 & 20 & \color{#0af}{40} \end{array}\ $ as above, but doubling (vs. tripling)
Thus $\, 11^{\large 5} \equiv \color{#0af}{40}\equiv \color{#c00}2^{\large 9}\equiv (11^{\large 7})^{\large 9},\,$ so $\,\ \bbox[6px,border:1px solid #c00]{\!1\equiv 11^{\large 63-5}\equiv 11^{\large 58}}$
Generally this idea often proves handy when other common methods don't easily apply (e.g. the Order Test implicitly used in lulu's answer or, by Euler's criterion $\:\! 11^{\large 29}\!\equiv (11\,|\,58)\equiv -1\,$ by a quick Legendre symbol computation), so it is well-worth knowing (the idea has wide application).
See here for general algorithms for order computation (some of which use this and related ideas).