Let $X$ be an integral scheme. Let $U\subset X$ be a non-empty open set. There is a canonical identification $\mathcal{O}_{U, \eta}\approx \mathcal{O}_{X, \eta}$ where $\eta$ is the generic point. Are the subrings $\mathcal{O}_X(U)\subseteq\mathcal{O}_{X, \eta}$ and $\bigcap_{p\in U}\mathcal{O}_{X, p}\subseteq\mathcal{O}_{X, \eta}$ equal?
If $X$ is affine it holds for $U=X$ (An integral domain $A$ is exactly the intersection of the localisations of $A$ at each maximal ideal). In the case $X=\mathrm{Spec}\:R$ where $R$ is a DVR it is true for $U=\{\eta\}$ because $\mathcal{O}_X(U)$ is the fraction field.