Given the continued fraction $$\epsilon=\cfrac{1}{2+\cfrac{3}{4+\cfrac{5}{6+\cfrac{7}{8+\ddots}}}},$$ in https://groups.google.com/forum/#!topic/sci.math/mlZ0VCTUJi8, Robert Israel ensures that $$\epsilon=\frac{\sqrt{\frac{2e}{\pi}}}{\mathrm{erfi}(\frac{1}{\sqrt{2}})}-1.$$
I have two doubts about his proof:
He says "take $f(n)=\frac{p(n)}{p(n+1)}$". Why he can assume that $f(n)$ has its form?
He says "so, the only way to avoid $f(n)\to-1$". Why is important to avoid $f(n)\to -1$?