I'm trying understand the proof of the Simons' identity:
$\begin{align*} \nabla_k \nabla_l h_{ij} &= \nabla_i \nabla_j h_{kl} + h_{kl}h_{ip}g^{pq}h_{qj} - h_{il} h_{kp} g^{pq} h_{qj}\\ &+ h_{kj} h_{ip} g^{pq} h_{ql} - h_{ij} h_{kp} g^{pq} h_{qj} + \overline{R}_{kilp} g^{pq} h_{qj}\\ &+ \overline{R}_{kijp} g^{pq} h_{ql} + \overline{R}_{pjil} g^{pq} h_{kq} + \overline{R}_{0i0j} h_{kl} - \overline{R}_{0k0l} h_{ij}\\ &+ \overline{R}_{pljk} g^{pq} h_{iq} + \overline{\nabla}_k \overline{R}_{0jil} + \overline{\nabla}_i \overline{R}_{0ljk}. \end{align*}$
I'm reading Lectures on Mean Curvature Flows by Xi-Ping-Zhu and I'm trying understand the following identity stated in his proof:
Then compute from the definition of $h_{ij}$ $$\nabla_k (\overline{R}_{0jil}) = \nabla_k \overline{R}_{0jil} + h_{ip} g^{pq} \overline{R}_{qjil} - h_{ik} \overline{R}_{0j0l} - h_{lk} \overline{R}_{0ji0}.$$
The local field of frames is the same as in the beginning of the section $2$ of this paper.
$\textbf{My attempt:}$
$\nabla_k \overline{R}_{0jil} = \nabla_k (\overline{R}_{0jil}) - \overline{R}(\overline{\nabla}_k \nu,e_j,e_i,e_l) - \overline{R}(\nu,\overline{\nabla}_k e_j,e_i,e_l) - \overline{R}(\nu,e_j,\overline{\nabla}_k e_i,e_l) - \overline{R}(\nu,e_j,e_i,\overline{\nabla}_k e_l)$
Computing the terms on the right separately,
$\begin{align*} \overline{R}(\overline{\nabla}_k \nu,e_j,e_i,e_l) &= \overline{R}(h^q_k e_q,e_j,e_i,e_l)\\ &= g^{qp} h_{pk} \overline{R}(e_q,e_j,e_i,e_l)\\ \end{align*}$
The problem above is that I obtained the term $h_{pk}$ instead of $h_{ip}$.
The problem below is that I don't know what to do with the terms involving Christoffel symbols. I thought use geodesic normal coordinates, but the expression for $\nabla_k (\overline{R}_{0jil})$ involves the term $g^{pq}$, then I don't need geodesic normal coordinates, but I don't know what to do with these terms. I thought find a relation between Christoffel's symbols in order to use the Bianchi's indentity, but I couldn't find a relation.
$\begin{align*} \overline{R}(\nu,\overline{\nabla}_k e_j,e_i,e_l) &= \overline{R}(e_i,e_l,\nu,\overline{\nabla}_k e_j)\\ &= \overline{R}(e_i,e_l,\nu,\overline{\Gamma}^m_{kj} e_m - h_{kj} \nu)\\ &= \overline{\Gamma}^m_{kj} \overline{R}(e_i,e_l,\nu,e_m)\\ &= \overline{\Gamma}^m_{kj} \overline{g}(\overline{R}(e_i,e_l)\nu,e_m)\\ &\overset{(1)}{=} - \overline{\Gamma}^m_{kj} \overline{g}(\nu,\overline{R}(e_i,e_l)e_m) \end{align*}$
$\begin{align*} \overline{R}(\nu,e_j,\overline{\nabla}_k e_i,e_l) &= \overline{R}(\nu, e_j,\overline{\Gamma}^m_{ki} e_m - h_{ki} \nu,e_l)\\ &= \overline{\Gamma}^m_{ki} \overline{R}(\nu,e_j,e_m,e_l) - h_{ki} \overline{R}(\nu, e_j,\nu,e_l)\\ &= - \overline{\Gamma}^m_{ki} \overline{R}(e_m,e_l,e_j,\nu) - h_{ki} \overline{R}(\nu, e_j,\nu,e_l)\\ &= - \overline{\Gamma}^m_{ki} \overline{g}(\nu,\overline{R}(e_m,e_l)e_j) - h_{ki} \overline{R}(\nu, e_j,\nu,e_l) \end{align*}$
$\begin{align*} \overline{R}(\nu,e_j,e_i,\overline{\nabla}_k e_l) &= \overline{R}(\nu, e_j,e_i,\overline{\Gamma}^m_{kl} e_m - h_{kl} \nu)\\ &= \overline{\Gamma}^m_{kl} \overline{R}(\nu,e_j,e_i,e_m) - h_{kl} \overline{R}(\nu, e_j,e_i,\nu)\\ &= - \overline{\Gamma}^m_{kl} \overline{R}(e_i,e_m,e_j,\nu) - h_{kl} \overline{R}(\nu, e_j,e_i,\nu)\\ &= - \overline{\Gamma}^m_{kl} \overline{g}(\nu,\overline{R}(e_i,e_m)e_j) - h_{kl} \overline{R}(\nu, e_j,e_i,\nu) \end{align*}$
$(1)$: We use here the fact that $\overline{\nabla} g \equiv 0$ and the lemma of this lecture notes on page $4$ applied for $T \equiv g$.
Thanks in advance!