0

When I learned about the properties of integrals, as the one below, for instance, I noticed the preamble of the theorem requires the respective functions to be both bounded and integrable.

If $f$ and $g$ are bounded, integrable functions on $[a, b]$, then so is $f + g$ and

$$ \int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx $$

My question is why do the functions have to be bounded? Isn't it enough for them to be integrable? I have not completed my Calculus course yet, so there are certain concepts I don't know about yet, like improper integrals.

Chrisuu
  • 1,391

1 Answers1

2

The previous comment is correct: integrable functions are bounded by definition. I think the reason that the word "bounded" is emphasized here does indeed have to do with improper integrals. For example, if $\int^{b}_{a} f(x) dx$ converges to $+ \infty$ and $\int^{b}_{a} g(x) dx$ converges to $- \infty$, then their sum is equal to $\infty - \infty$, which is an indeterminate form.

Amy Ngo
  • 890
  • What would $\int_a^b [f(x) + g(x)], dx$ evaluate to in the example you gave? Would it evaluate to $0$? – Chrisuu Aug 24 '19 at 14:56