In simple form the system is
$$min_{x_1,x_2,...,x_n}\sqrt{\sum_{i=1}^n (y_i-A_{i,1}x_1-A_{i,2}x_2-...-A_{i,n}x_n)^2}$$
$$s.t.\quad \sqrt{\sum_{i=1}^n x_i^2}-1=0$$
where the Lagrangian becomes
$$L=\sqrt{\sum_{i=1}^n (y_i-A_{i,1}x_1-A_{i,2}x_2-...-A_{i,n}x_n)^2}+\lambda \bigg({\sqrt {\sum_{i=1}^n x_i^2}-1}\bigg )$$
By taking partial derivatives
$$\frac{\partial L}{\partial x_1}=\frac{\lambda x_1}{\sqrt{\sum_{i=1}^n x_i^2}}-\frac{\sum_{i=1}^nA_{i,1}(y_i-A_{i,1}x_i)}{\sqrt{\sum_{i=1}^n (y_i-A_{i,1}x_1-A_{i,2}x_2-...-A_{i,n}x_n)^2}}=0$$
$$\frac{\partial L}{\partial x_2}=\frac{\lambda x_2}{\sqrt{\sum_{i=1}^n x_i^2}}-\frac{\sum_{i=1}^nA_{i,2}(y_i-A_{i,2}x_i)}{\sqrt{\sum_{i=1}^n (y_i-A_{i,1}x_1-A_{i,2}x_2-...-A_{i,n}x_n)^2}}=0$$
...
$$\frac{\partial L}{\partial x_n}=\frac{\lambda x_n}{\sqrt{\sum_{i=1}^n x_i^2}}-\frac{\sum_{i=1}^nA_{i,n}(y_i-A_{i,n}x_i)}{\sqrt{\sum_{i=1}^n (y_i-A_{i,1}x_1-A_{i,2}x_2-...-A_{i,n}x_n)^2}}=0$$
$$\frac{\partial L}{\partial \lambda}=\sqrt {\sum_{i=1}^n x_i^2}-1=0$$
Now you have n+1 nonlinear equation which you can solve for n+1 variables by using some numerical method.
PS: I skipped the positivity of x's. You can hardcode it by Kuhn-Tucker conditions which can make the system too complicated; or you can check your solution set afterwards.