$${ x }^{ 2 }=4\\ \sqrt { { x }^{ 2 } } =\sqrt { 4 } \\ |x|=2$$ According to my professor, in the above case, the absolute value gives two solutions: $x=±2$ Consider the discriminant in the quadratic formula: $$x=\frac { -b±\sqrt { { b }^{ 2 }-4ac } }{ 2a } \\ Let\quad { z }^{ 2 }={ b }^{ 2 }-4ac\\ ±\sqrt { { b }^{ 2 }-4ac } \\ =±\sqrt { { z }^{ 2 } } \\ =±|z|\\ =±z$$ However, according to my professor, in this case, the absolute value gives only one solution: $|z|=z$
How come the absolute value sometimes gives one solution and sometimes it gives two solutions?

