I made a curious observation. Let $a_n$ be the sequence of numbers determined by a recurrence relation $$\begin{cases} \vphantom{\large|}a_0=0\\ \vphantom{\large|}a_1=1\\ \vphantom{\Large|}n\,a_n=(5-2 n)\,a_{n-1}+3{\tiny\text{ }}(n-1)\,a_{n-2}+1 \end{cases}\tag{$\small\spadesuit$}$$It also can be generated using an equivalent homogeneous recurrence relation $$\begin{cases} \vphantom{\large|}a_0=0\\ \vphantom{\large|}a_1=a_2=1\\ \vphantom{\Large|}n\,a_n = (4-n)\,a_{n-1}+(n-2)\left(5{\tiny\text{ }}a_{n-2} - 3{\tiny\text{ }}a_{n-3}\right) \end{cases}\tag{$\small\clubsuit$}$$
0, 1, 1, 2, 1, 4, -2, 13, -23, 68, -164, 439, -1146, 3067, -8231, 22306, -60791, 166684, ...
It appears that this sequence modulo $2$ gives the Thue–Morse sequence, meaning that if we denote $t_n=(-1)^{a_n}\,$ then it satisfies $$t_0 = 1,\quad t_n = (-1)^n \, t_{\lfloor n/2\rfloor}.\tag{$\small\diamondsuit$}$$ How can we prove this?