in Evans' book (pag. 135) there's the following example (already asked
in this site, but never answered):
Consider the initial-value problem \begin{cases} u_t+\frac 12|Du|^2=0 & \text{in }\mathbb{R}^n \times (0,\infty) \\ \qquad \qquad \, \, \, \, u = |x| & \text{on } \mathbb{R}^n \times \{t=0\} \tag{49} \end{cases} The Hopf-Lax formula for the unique weak solution of $(49)$ is $$u(x,t)=\min_{y \in \mathbb{R}^n} \left\{\frac{|x-y|^2}{2t}+|y| \right\} \tag{50}$$ Assume $|x| > t$. Then \begin{align}D_y \left(\frac{|x-y|^2}{2t} + |y| \right) = \frac{y-x}{t}+\frac{y}{|y|} & (y \not=0)\end{align} and this expression equals $0$ if $x=y+\frac{y}{|y|}t, y=(|x|-t)\frac{x}{|x|} \not=0$.
Thus $u(x,t)=|x|-\frac t2$ if $|x| > t$. If $|x| > t$, the minimum in $(50)$ is attained at $y=0$. Consequently $$u(x,t)=\begin{cases}|x|-\frac{t}{2} & \text{if }|x| > t \\ \qquad\frac{|x|^2}{2t} & \text{if }|x| \le t \end{cases}$$
The thoery behind that formula is clear, but I really can't understand some steps.
I can find $x=y+\frac{y}{|y|}t$ but how can I derive \begin{align} y=(|x|-t)\frac{x}{|x|} \end{align} I can't find it.
How can I see a priori that I have to distinguish the cases $|x|\leq t$ and $|x| >t$ in order to find the minimum?