Let $\Gamma$ be a group generated by two matrices as follows:
$\Gamma:= \bigg\langle \begin{bmatrix}1&0\\3&1\end{bmatrix},\begin{bmatrix}13&12\\12&13\end{bmatrix} \bigg\rangle$
For any $\begin{bmatrix}a&b\\c&d\end{bmatrix}\in \Gamma$, and for any $x\in \mathbb{R}$, we define an action: $\begin{bmatrix}a&b\\c&d\end{bmatrix}(x):=\dfrac{ax+b}{cx+d}$.
Let $\Gamma(1)$ be the set of images of the action of $\Gamma$ on 1. Now we define a function $f$ on the Cartesian product $\Gamma(1)\times \Gamma(1)$ as follows:$f(x,y)= 0$ if $(x \cdot y)>0$, and $f(x,y)= \sqrt{-x.y}$ otherwise. I knew that: $f(\Gamma(1)\times \Gamma(1)) \subset [0,1]$.
My question: Is $f(\Gamma(1)\times \Gamma(1))$ dense in $[0,1]$?
I hope someone can help me or give me any hints for this question. Thank you so much for your help!