Note that $\cos(u)\cos(v)=\frac{1}{2}[\cos(u+v)+\cos(u-v)]$
Therefore, $\int_{a}^{b}\cos(u)\cos(v)dx=\frac{1}{2}\int_{a}^{b}[\cos(u+v)+\cos(u-v)]dx$
Putting $a=-\pi$, $b=\pi$, $u=rx$, $v=kx$, we get
$\int_{-\pi}^{\pi}\cos(rx)\cos(kx)dx=\frac{1}{2}\int_{-\pi}^{\pi}[\cos(rx+kx)+\cos(rx-kx)]dx$
$=\frac{1}{2}\int_{-\pi}^{\pi}[\cos((r+k)x)+\cos((r-k))]dx$
$=\frac{1}{2}[\frac{\sin((r+k)x)}{r+k}+\frac{\sin((r-k)x)}{r-k}]_{-\pi}^{\pi}$
$=\frac{1}{2}[\frac{\sin((r+k)\pi)}{r+k}+\frac{\sin((r-k)\pi)}{r-k}]-\frac{1}{2}[\frac{-\sin((r+k)\pi)}{r+k}+\frac{-\sin((r-k)\pi)}{r-k}]$
$=\frac{1}{2}[\frac{\sin((r+k)\pi)}{r+k}+\frac{\sin((r-k)\pi)}{r-k}]+\frac{1}{2}[\frac{\sin((r+k)\pi)}{r+k}+\frac{\sin((r-k)\pi)}{r-k}]$
$=\frac{\sin((r+k)\pi)}{r+k}+\frac{\sin((r-k)\pi)}{r-k}$