Assume $x,\,y\in G$ and both commute with $[x,\,y]$. Prove that for all $n\in\mathbb{Z}^+,\;(xy)^n=x^ny^n[y,\,x]^{\frac{n(n-1)}{2}}$.
$[x,\,y]=x^{-1}y^{-1}xy$ is the commutator of $x$ and $y$.
I have found that \begin{equation} xy^{-1}xy=y^{-1}xyx\\ yx^{-1}y^{-1}x=x^{-1}y^{-1}xy\\ [x,\,y][y,\,x]=1\\ x=[y,\,x]x[x,\,y]\\ y=[y,\,x]y[x,\,y]. \end{equation} However, I can only prove the special case when $n=2$.