1

We must prove :$\min\limits_{x+y=1}(x^n+y^n)=\frac{1}{2^{n-1}} $ for all $n \in \mathbb{N}_{>0}$

And to prove this we can use the inequality: $\frac{x+y}{2}\leq (\frac{x^n+y^n}{2})^{\frac{1}{n}}$ where equality is satisfied if $x=y=1/2$

My question is how we can prove inquality: $\frac{x+y}{2}\leq (\frac{x^n+y^n}{2})^{\frac{1}{n}}$ ?

Ica Sandu
  • 565
  • Even better: https://math.stackexchange.com/q/409604/42969. –Also related: https://math.stackexchange.com/q/1292652/42969. – Martin R Jul 05 '19 at 09:48

1 Answers1

2

This is just convexity of the function $f(x)=x^{n}$. The inequality simply says $f(\frac {x+y} 2) \leq \frac {f(x)+f(y)} 2$.