Since $1001=7\times 143$, multiplying the both sides of your equation
$$\overline{MATHS}\times7=\overline{POISON}$$
by $143$, we get
$$\overline{THS}\equiv \overline{SON}\times 143\pmod{1000}\tag1$$
Also, since we have $7\mid \overline{POISON}$ and $3\not\mid\overline{POISON}$, we get
$$2P+I\equiv 2S+N\pmod 7\tag2$$
$$P+I\not\equiv O-S-N\pmod 3\tag3$$
Also, since $\overline{MATHS}$ is a five-digit number, we see that $P\le 6$ and that if $P=0$, then $O\ge 7$.
Here, let us separate it into four cases.
Case 1 : $(S,N)=(1,7)$
From $(1)$, we have
$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline
O&0&2&3&4&5&6&8&9\\ \hline
T&3&1&5&0&4&8&7&1\\ \hline
H&0&6&9&2&5&8&4&7 \\\hline
\end{array}$$
implying $(O,T,H)=(3,5,9),(4,0,2)$.
If $(O,T,H)=(3,5,9)$, then from $(2)(3)$, we get $(P,I)=(4,8)$ and $\color{red}{62591\times 7=438137}$.
If $(O,T,H)=(4,0,2)$, then there is no $(P,I)$ satisfying $(2)(3)$.
Case 2 : $(S,N)=(3,1)$
From $(1)$, we have
$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline
O&0&2&4&5&6&7&8&9\\ \hline
T&0&9&7&1&6&0&4&9\\ \hline
H&4&0&6&9&2&5&8&1 \\\hline
\end{array}$$
implying $(O,T,H)=(2,9,0),(4,7,6),(7,0,5)$.
If $(O,T,H)=(2,9,0)$, then from $(2)(3)$, we get $(P,I)=(5,4)$ and $7\color{green}4903\times 7=52\color{green}4321$.
If $(O,T,H)=(4,7,6)$, then there is no $(P,I)$ satisfying $(2)(3)$.
If $(O,T,H)=(7,0,5)$, then from $(2)(3)$, we get $(P,I)=(4,6),(6,2),(6,9)$ and
$$\color{green}68053\times 7=47\color{green}6371,9\color{green}6053\times 7=\color{green}672371,\color{green}97053\times 7=67\color{green}9371$$
Case 3 : $(S,N)=(7,9)$
From $(1)$, we get
$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline
O&0&1&2&3&4&5&6&8\\ \hline
T&3&8&2&6&1&5&9&8\\ \hline
H&8&1&4&7&0&3&6&2 \\\hline
\end{array}$$
implying $(O,T,H)=(0,3,8),(4,1,0)$.
If $(O,T,H)=(0,3,8)$, then from $(2)(3)$, we get $(P,I)=(2,5),(6,4)$ and
$$\color{green}29387\times 7=\color{green}205709, \color{green}863\color{green}87\times 7=604709$$
If $(O,T,H)=(4,1,0)$, then from $(2)(3)$, we get $(P,I)=(2,5),(5,6)$ and
$$3\color{green}5107\times 7=24\color{green}5749, \color{green}7810\color{green}7\times 7=546749$$
Case 4 : $(S,N)=(9,3)$
From $(1)$, we get
$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline
O&0&1&2&4&5&6&7&8\\ \hline
T&1&5&9&8&2&7&1&5\\ \hline
H&2&5&8&4&7&0&3&6 \\\hline
\end{array}$$
implying $(O,T,H)=(0,1,2),(5,2,7),(6,7,0),(8,5,6)$.
If $(O,T,H)=(0,1,2)$, then from $(2)(3)$, we get $(P,I)=(4,6)$ and $\color{red}{58129\times 7=406903}$.
If $(O,T,H)=(5,2,7)$, then from $(2)(3)$, we get $(P,I)=(4,6)$ and $\color{green}65279\times 7=45\color{green}6953$.
If $(O,T,H)=(6,7,0)$, then there is no $(P,I)$ satisfying $(2)(3)$.
If $(O,T,H)=(8,5,6)$, then from $(2)(3)$, we get $(P,I)=(0,7)$ and $\color{red}{12569\times 7=087983}$.
Therefore, from the four cases above, we see that the answer is
$$\color{red}{6259181438137}\ \ (62591\times 7=438137)$$
$$\color{red}{5812969406903}\ \ (58129\times 7=406903)$$
$$\color{red}{1256979087983}\ \ (12569\times 7=087983)$$