I just fell by accident on this question, and figured I should give out my proof as it uses other (simpler in my opinion) ideas. I originally had to solve it during an oral exam for a competition.
It can always be useful for newcomers that want a different answer.
The key argument is to use the discrete equivalent of integration by parts: Abel’s summation which can so often save you from finding convenient paquets for almost alternating sequences. I’ll try to explain this thoroughly because it is a very convenient technique.
Now in the continuous version, we use
$$\int_a^b f(x)g(x) \, dx = \left[f(x) \int_a^x g(t) \, dt \right]_a^b - \int_a^b f’(x) \int_a^x g(t) \, dt $$
Now in our setting we want discrete objects, so $a=1,\, b= \infty$, $x=n$ and the integral becomes a sum and the differential a difference.
What we want is to get a more convenient sum to study, we know that the differential of $1/x$ is $-1/x^2$ which is much more suited for convergence, so we set $d_n = \frac{1}{n} - \frac{1}{n+1}= \frac{1}{n(n+1)}$, the negative of the differential and $S_n= \sum_{k=1}^n \sin(k)^k$.
$$\begin{align*}
\sum_{n=1}^N \frac{\sin(n)}{n}
&= \sum_{n=1}^N (S_n-S_{n-1})\frac{1}{n} \\
&= \sum_{n=1}^N S_n\frac{1}{n}
- \sum_{n=1}^N S_{n-1}\frac{1}{n} \\
&= \sum_{n=1}^N S_n\frac{1}{n}
- \sum_{n=-1}^{N-1} S_{n}\frac{1}{n+1} \\
&= S_N\frac{1}{N} - S_{0}\frac{1}{1} + \sum_{n=1}^{N-1} S_n d_n &(\ast)\\
&= S_N\frac{1}{N} + \sum_{n=1}^{N-1} \frac{S_n}{n(n+1)} \\
\end{align*}$$
Now I hope you recognised the integration by parts formula at the step $(\ast)$. Now we only need to prove that $S_n$ is « bounded enough » to ensure convergence since $d_n$ is absolutely convergeant.
Basically, $S_n$ should have the same behaviour as the integral $\int_{0}^n \sin(t)^t \, dt$, but the deviation from it increases over time, so we will use a much more basic method. Let $\epsilon >0$. We know that $\cos(x) \leq 1-\frac{x^2}{2}$, so for $x \in [-\pi/2,\pi/2]$, $|x| \leq \sqrt{2\epsilon} \implies \cos(x) \leq 1-\epsilon$.
By translation, and $\pi$-periodicity of $|\sin(x)|$, we deduce that $$\begin{align*}
&x \notin \bigcup_{k \in \mathbb{Z}} ](k+1/2)\pi - \sqrt{2\epsilon}, (k+1/2)\pi + \sqrt{2\epsilon}[ \\
\iff & x \mod \pi \notin ]\pi/2 -\sqrt{2\epsilon},\pi/2 +\sqrt{2\epsilon}[ \\
\implies & |\sin(x)| \leq 1-\epsilon.
\end{align*}$$
Now since $(n \mod \pi)_{n \in \mathbb{N}^*}$ is well equidistributed, if we set
$$\begin{align*}
{}^\epsilon \! A_{m}^{n} &= \{m+1,\dots,n\} \setminus {}^\epsilon \! B_n^m \\
{}^\epsilon \! B_{m}^{n} &= \left\{k \in \{m+1,\dots,n\} \mid \pi/2- \sqrt{2\epsilon} \le k \mod \pi \le \sqrt{2\epsilon}\right\}
\end{align*}$$
then
$$\begin{eqnarray}
\frac{\sharp {}^\epsilon \! A_{m}^{n}}{n} &\to& \frac{\pi - 2 \sqrt{2\epsilon}}{\pi}\\
\frac{\sharp {}^\epsilon \! B_{m}^{n}}{n} &\to& \frac{2 \sqrt{2\epsilon}}{\pi}\\
\end{eqnarray}$$
And furthermore it has uniform linear speed, i.e.
$$\begin{eqnarray}
\left| \frac{ \sharp {}^\epsilon \! B_{m}^{n}}{n-m} - \frac{ 2 \sqrt{2\epsilon}}{\pi} \right| & \le & \frac{C \sqrt{\epsilon}}{n-m}
\end{eqnarray}$$
since $\pi$ is badly approximated by rationals, otherwise we could have gotten some $1/n\ln(n)$.
Only the second bound interests us:
Let $N = \frac{P(P+1)}{2}$,
$$\begin{align*}
\sum_{n=1}^{N} |\sin(n)|^n
&=
\sum_{p=0}^P \sum_{k=1}^{p} |\sin(p(p+1)/2 + k)|^{p(p+1)/2 + k}\\
&=
\sum_{p=0}^P \sum_{k\in {}^\epsilon \!A_{p(p+1)/2}^{(p+1)(p+2)/2}} |\sin(p(p+1)/2 + k)|^{p(p+1)/2 + k}\\
&+ \sum_{p=0}^P \sum_{k\in {}^\epsilon \!B_{p(p+1)/2}^{(p+1)(p+2)/2}} |\sin(p(p+1)/2 + k)|^{p(p+1)/2 + k} \\
&\le \sum_{p=0}^P \sum_{k\in {}^\epsilon \!A_{p(p+1)/2}^{(p+1)(p+2)/2}} (1-\epsilon)^{p(p+1)/2 + k} + \sum_{p=0}^P \sum_{k\in {}^\epsilon \!B_{p(p+1)/2}^{(p+1)(p+2)/2}} 1 \\
&\le
\sum_{p=0}^P \sum_{k = 1}^{p} (1-\epsilon)^{p(p+1)/2 + k}
+ \sum_{p=0}^P \sharp {}^\epsilon \! B_{p(p+1)/2}^{(p+1)(p+2)/2} \\
&\le
\sum_{n=1}^N (1-\epsilon)^n
+ \sum_{p=0}^P \left( \frac{2p\sqrt{2\epsilon}}{\pi}
+ C\sqrt{\epsilon} \right) \\
&\le
(1-\epsilon)\frac{1-(1-\epsilon)^{N}}{\epsilon}
+ \frac{2N\sqrt{2\epsilon}}{\pi}
+ C \sqrt{2N\epsilon}\\
&\le
\frac{1}{\epsilon}
+ \frac{2N\sqrt{2\epsilon}}{\pi}
+ C \sqrt{2N\epsilon}
\end{align*}$$
Now by setting $\epsilon = N^{-2/3}$, we get $S_N = O(N^{2/3})$ (which is the best bound of the form $N^\alpha$), now from our previous result form Abel’s summation, we get the convergence and
$$\sum_{n=1}^\infty \frac{\sin(n)^n}{n} = \sum_{n = 1}^\infty \frac{S_n}{n(n+1)}$$
And the convergence rate is at least in $O(1/\sqrt[3]{n})$, which is a better bound than the one given by the elegant technique of @Jade-Vanadium. But beware to next section, we can't ensure absolute convergence with this method, which is possible with @Jade-Vanadium's method!!
I have made some numerical computations and it seems the convergence rate is exactly $1/n^{1/3}$, if you want here is my code (that I asked chatgpt to write for me since I am lazy):
import numpy as np
import matplotlib.pyplot as plt
Définir la fonction principale
def sequence(N, d):
# Calculer les termes de sin(k)^k / k pour k dans [1, N^3]
max_k = N3
terms = np.array([np.sin(k)k / k for k in range(1, max_k+1)])
# Calculer la suite pour chaque n dans [1, N]
results = []
for n in range(1, N+1, d):
# Somme des termes de n à n^3
sum_terms = np.sum(terms[n-1:max_k])
result = (n**(1/3)) * sum_terms
results.append(result)
return results
Paramètres
N = 200
d = 5
Calculer les résultats
results = sequence(N, d)
Créer le graphique
n_values = np.arange(1, N+1, d)
plt.plot(n_values, results, label=r'$\sqrt[3]{n} \cdot \sum_{k=n}^{n^3} \frac{\sin(k)^k}{k}$')
plt.xlabel('n')
plt.ylabel('Valeur de la suite')
plt.title('Graphique de la suite $\sqrt[3]{n} \cdot \sum_{k=n}^{n^3} \frac{\sin(k)^k}{k}$')
plt.grid(True)
plt.legend()
plt.show()
Remark
Note that the Abel summation was necessary: if we directly use the technique used in the second part, we can't get the absolute convergence, so although I have a better convergence speed, my technique does not ensure the absolute convergence of the sequence.
Indeed you get:
$$\begin{align*}
\sum_{n=1}^{N} \frac{|\sin(n)|^n}{n}
&=
\sum_{p=0}^P \sum_{k=1}^{p} \frac{|\sin(p(p+1)/2 + k)|^{p(p+1)/2 + k}}{p(p+1)/2 + k}\\
&=
\sum_{p=0}^P \sum_{k\in {}^\epsilon \!A_{p(p+1)/2}^{(p+1)(p+2)/2}} \frac{|\sin(p(p+1)/2 + k)|^{p(p+1)/2 + k}}{p(p+1)/2 + k}\\
&+ \sum_{p=0}^P \sum_{k\in {}^\epsilon \!B_{p(p+1)/2}^{(p+1)(p+2)/2}} \frac{|\sin(p(p+1)/2 + k)|^{p(p+1)/2 + k}}{p(p+1)/2 + k}\\
&\le \sum_{p=0}^P \sum_{k\in {}^\epsilon \!A_{p(p+1)/2}^{(p+1)(p+2)/2}} \frac{(1-\epsilon)^{p(p+1)/2 + k}}{p(p+1)/2 +k}
+ \sum_{p=0}^P \sum_{k\in {}^\epsilon \!B_{p(p+1)/2}^{(p+1)(p+2)/2}} \frac{1}{p(p+1)/2+k} \\
&\le \sum_{p=0}^P \sum_{k\in {}^\epsilon \!A_{p(p+1)/2}^{(p+1)(p+2)/2}} \frac{(1-\epsilon)^{p(p+1)/2 + k}}{p(p+1)/2 +k}
+ \sum_{p=1}^P \sum_{k\in {}^\epsilon \!B_{p(p+1)/2}^{(p+1)(p+2)/2}} \frac{1}{p(p+1)/2}
+ \sum_{k\in {}^\epsilon \!B_{0}^{1}} \frac{1}{k}\\
&\le
\sum_{n=1}^N \frac{(1-\epsilon)^{n}}{n}
+ \sum_{p=1}^P \sharp {}^\epsilon \! B_{p(p+1)/2}^{(p+1)(p+2)/2} \frac{1}{p(p+1)/2}
+1\\
&\le
\sum_{n=1}^N \frac{(1-\epsilon)^{n}}{n}
+ \sum_{p=1}^P \left( \frac{2p\sqrt{2\epsilon}}{\pi p(p+1)/2}
+ \frac{C\sqrt{\epsilon}}{p(p+1)/2} \right) +1\\
&\le
\sum_{n=1}^N \frac{(1-\epsilon)^{n}}{n}
+ \frac{4\sqrt{\epsilon}}{\pi} \sum_{p=1}^P \frac{1}{p+1}
+ 2C \sqrt \epsilon \sum_{p=1}^P \left(\frac{1}{p}- \frac{1}{p+1}\right)
+1\\
&\le
\sum_{n=1}^N \frac{(1-\epsilon)^{n}}{n}
+ \frac{4\sqrt{\epsilon}}{\pi}\ln(P+1)
+2 C \sqrt \epsilon \left(1 - \frac{1}{P+1} \right)
+1\\
&\leq \sum_{n=1}^N \frac{(1-\epsilon)^{n}}{n}
+ \frac{2\sqrt{\epsilon}}{\pi}\ln(2N)
+2 C \sqrt \epsilon +1
\end{align*}$$
But if you set $\epsilon = f(N)$, you need to ensure $\sqrt{\epsilon} = O(\ln(2N)^{-1})$ so at least, $\epsilon = O(\ln(2N)^{-2})$, but in this case $\sum_{n=1}^N \frac{(1-f(N))^{n}}{n} =-\ln (O(\ln(2N)^{-2})) = \Omega(\ln(\ln(N)))$ which diverges.