Theorem $\ f(x)= (ax\!+\!1)(bx\!+\!1)\ $ has a root $\!\bmod n\,$ for all $\,n\!>\!1\!\iff\! (a,b) = 1$
Proof $\ (\Rightarrow)\ $ if $\,1 < c\mid a,b\,$ then $\!\bmod c\!: f(x)\equiv 1\not\equiv 0.\,$ $(\Leftarrow)\,$ Factor $\,n = a'b'$ where $\,b'\,$ collects all prime factors of $\,n\,$ that divide $\,a,\,$ so $\,1 \!=\!{(a,a')},\,$ and $\,1 \!=\! (b,b') = \color{darkorange}{(a',b')},\,$ by $\,(a,b)\!=\!1,\,$ so $\,\color{#0a0}{ax\!+\!1}\,$ has root $\,\color{#0a0}{x\equiv -a^{-1}\!\pmod{\!a'}}\,$ and $\,\color{#c00}{bx\!+\!1}\,$ has root $\,\color{#c00}{x\equiv -b^{-1}\!\pmod{\!b'}}.\,$ Therefore $\,(\color{#0a0}{ax\!+\!1})(\color{#c00}{bx\!+\!1})\,$ has a root $\!\color{#0a0}{\bmod a'}\,$ & $\!\color{#c00}{\bmod b'},\:\!$ so CRT lifts it to $\!\bmod \color{#0a0}{a'}\color{#c00}{b'}\!=\!n,\,$ by $ \color{darkorange}{(a',b')}\!=\!1$.
Remark $ $ See this MO post for more on local-global principles / obstructions (Hasse, Selmer, etc).