3

Let $H$ be a Hilbert space. For $T\in\mathcal{B}(H)$, define the numerical radius of $T$ as $\omega(T):=\displaystyle{\sup_{\|x\|=1}|\langle Tx,x\rangle|}$. I am trying to prove that $\|T\|\leq2\omega(T)$ but I just don't see it. My text simply says that this is "easy" and all the literature online simply refer to this estimate as "well-known".

I know that, for self-adjoint operators, it is $\|T\|=\omega(T)$ and it can be proven elementary. I thought that maybe writing $T=X+iY$ with $X,Y$ self-adjoint could help, but then I couldn't estimate the numerical radii of $X,Y$ related to $\omega(T)$.

1 Answers1

6

First, by Cauchy-Schwarz, we have for all $x \in H$ such that $\lVert x \rVert = 1$ \begin{equation*} \lvert \langle Tx, x \rangle \rvert \leq \lVert Tx \rVert \underbrace{\lVert x \rVert}_{=1} \leq \lVert T \rVert \end{equation*} By the polarization identity, we have for all $(x, y) \in H^2$ $$ 4\langle Tx, y \rangle = \langle T(x + y), x + y \rangle - \langle T(x - y), x - y \rangle + i\langle T(x + iy), x + iy \rangle - \langle T(x - iy), x - iy\rangle. $$ Applying triangle inequality we get $$ 4\lvert \langle Tx, y \rangle \rvert \le w(T) \big[\lVert x + y\rVert^2 + \lVert x - y \rVert^2 + \lVert x + iy \rVert^2 + \lVert x - iy \rVert^2\big] $$

Finally, by the identity $\lVert x + y\rVert^2 + \lVert x - y \rVert^2 + \lVert x + iy \rVert^2 + \lVert x - iy \rVert^2=4[\lVert x \rVert^2 + \lVert y \rVert^2]$: \begin{equation*} 4\lvert \langle Tx, y \rangle \rvert \leq 4w(T)[\lVert x \rVert^2 + \lVert y \rVert^2] \end{equation*} Thus, if we take $\lVert x \rVert = \lVert y \rVert = 1$: \begin{equation*} \lvert \langle Tx, y \rangle \rvert \leq 2w(T) \end{equation*} As this is true for all $x, y \in H$ such that $\lVert x \rVert = \lVert y \rVert = 1$, you have: $\lVert T \rVert \leq 2w(T)$.

hbghlyj
  • 5,361
Raito
  • 1,940
  • 11
  • 17