I have the problem:
Let $f:\mathbb{R} \rightarrow \mathbb{R}$ a smooth function such that $f(0)=0$ and consider $ F $ the continuous extension of $ \frac{f (x)}{x} $, is $ F $ a smooth function?
I suppose the result is true, and I know that:
$f'(0) = \lim_{x \rightarrow 0} \frac{f(x) - f(0)}{x} = \lim_{x \rightarrow 0} \frac{f(x)}{x} = F(0)$
$f''(0) = \lim_{x \rightarrow 0} \frac{ f'(x) - f'(0)}{x} = \lim_{x \rightarrow 0} \frac{ f'(x) - F(0)}{x} $
I want to use a reasoning like this to define $ F^{(n)} (0) $, does anyone have a counterexample or demonstration?