concept about function $\binom{ \infty}k$ For $ k \in \mathbb{N}$
The idea of this function is derived from my power sum formula
Formula is as
$$\sum_{k=1}^{n} k^{m}=\sum_{b=1}^{m+1} \binom{n}b\sum_{i=0}^{b-1} (-1)^{i}(b-i)^{m}\binom{b-1}i$$
This formula helps to derive $\binom{ \infty}k$ function and to calculate it's value. we know the negative values of zeta function.if
$$ \zeta(-m)=\lim_{n\to \infty}\sum_{k=1}^{n} k^{m}$$
So can we construct it as $$\zeta(-m)=\sum_{b=1}^{m+1} \binom{\infty}b\sum_{i=0}^{b-1} (-1)^{i}(b-i)^{m}\binom{b-1}i$$ Then we can calculate, if we substitute value $\zeta (0)=-1/2$ then$\binom{\infty}1=-1/2$
Again we can calculate next value using or substituting previous values of $\binom{\infty}k$.
Other values of $\binom{\infty}k$are
$$\binom{\infty}2=5/12$$ $$\binom{\infty}3=-3/8$$ $$\binom{\infty}4=251/720$$ $$...$$ And so on.
Application
Definition
Let's us define a sequence as :
$$a=(a_{1},a_{2},a_{3},...)$$
Difference between two term is as follows
$$\triangle^{0}a_{n}=a_{n}$$ $$\triangle^{1}a_{n}=a_{n+1}-a_{n}$$ More generally $$\triangle^{m}a_{n}=\triangle^{m-1}a_{n+1}-\triangle^{m-1}a_{n}$$ If there exist some $m$ for $\triangle^{m}a_{n}=0$ such that $\forall n \in \mathbb{N}$
Then $$\sum_{k=1}^{n} a_{k}=\sum_{b=1}^{m+1} \binom{n}b\triangle^{b-1}a_1$$
now if $\lim_{n \to \infty}$ put values $\binom{\infty}b$
$$\sum_{k=1}^{\infty} a_{k}=\sum_{b=1}^{m+1} \binom{\infty}b\triangle^{b-1}a_1$$
And Get the result
Example
To calculate $1+3+5+...+(2n-1)+...=1/3$
Question
Q1- how this function $\binom{\infty}k$ impact to understanding and analysis of mathematics?
<p>Q2- can we derive it's definition/algorithm to calculate <em>function</em> <span class="math-container">$\binom{\infty}k$</span> for <span class="math-container">$k\in\mathbb{C}$</span> values by analysis in some field , i mean what is generalization for <em>function</em> <span class="math-container">$\binom{\infty}k$</span>?</p> <p>Q3-Is it have some interesting properties?</p>
Thank you very much for your suggestions comments and answer.