Let $S(f,n)$ denote the set of solutions of congruence equation $f(x)\equiv 0 \pmod{n}$ for $f=\sum_{i=0}^{m}{a_ix^i}\in\mathbb{Z}[x]$. Denote $N(f,n)=|S(f,n)|$.
Lemma 1: Let $n=\prod_{i=1}^{k}{p_i^{e_i}}$ where $p_i$ are distinct primes and
$e_i$ are positive integers. Then
$N(f,n)=\prod_{i=1}^{k}{N(f,p_i^{e_i})}$.
Lemma 2: Define $f'(x)=\sum_{i=1}^{m}{ia_ix^{i-1}}$. If $S(f,p)\cap
S(f',p)=\emptyset$, then $N(f,p^l)=N(f,p)$, where $p$ is a prime and
$l$ is an positive integer.
Lemma 3: $N(x^k-n,p)=\gcd(k,p-1)$ if $N(x^k-n,p)>0$ and $p\not\mid n$.
1) Put $f(x)=x^2-3$, $n=11^2\cdot 23^2$ and We have $$N(x^2-3,11^2\cdot 23^2)=N(x^2-3,11^2)\cdot N(x^2-3, 23^2)=N(x^2-3,11)\cdot N(x^2-3, 23),$$ since $S((x^2-3)',p_i)=\{0\}$ and $0\notin S(x^2-3,p_i)$.
2) To determinate $N(x^2-3, 11)$ and $N(x^2-3, 23)$, we need some results about the Legendre symbol for prime $p$,
$$\left({\frac {a}{p}}\right)={\begin{cases}1&{\text{if $x^2\equiv a\pmod{e}$ has solutions}},\\-1&{\text{if $x^2\equiv a\pmod{e}$ has no solutions}},\\0&{\text{if }}a\equiv 0{\pmod {p}}.\end{cases}}$$
In fact it is easy to calculate Legendre symbol if $p\not\mid n$. That is
$$\left({\frac {a}{p}}\right)\equiv a^{\frac{p-1}{2}}\pmod{p}.$$
Using Legendre symbol, we have $\left({\frac {3}{11}}\right)\equiv 3^{\frac{11-1}{2}}\equiv 1\pmod{11}$ and $\left({\frac {3}{23}}\right)\equiv 3^{\frac{23-1}{2}}\equiv 3\cdot 9\cdot 6\equiv 1 \pmod{23}$. Note that $$3^2\equiv 9 \pmod{23},$$ $$3^4\equiv (3^2)^2 \equiv 81 \equiv 12\pmod{23},$$ $$3^8\equiv (3^4)^2 \equiv 144 \equiv 6\pmod{23},$$
Due to Lemma 3, $N(x^2-3, 11)=N(x^2-3, 23)=2$.
3) To sum up, $N(x^2-3,11^2\cdot 23^2)=2\cdot 2=4$, i.e., the congruence equation $x^2\equiv 3 \pmod{11^2\cdot 23^2}$ has 4 solutions.