So as I was reading this chapter I came across this example:
SPREAD OF A DISEASE A contagious disease—for example, a flu virus—is spread throughout a community by people coming into contact with other people. Let $x(t)$ denote the number of people who have contracted the disease and $y(t)$ denote the number of people who have not yet been exposed. It seems reasonable to assume that the rate $$\frac{{dx}}{{dt}} % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGKbGaamiEaaqaaiaadsgacaWG0baaaaaa!39CE! $$ at which the disease spreads is proportional to the number of encounters, or interactions, between these two groups of people. If we assume that the number of interactions is jointly proportional to $x(t)$ and $y(t)$ —that is, proportional to the product $xy$—then,
$$\frac{{dx}}{{dt}} = kxy % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGKbGaamiEaaqaaiaadsgacaWG0baaaiabg2da9iaadUgacaWG4bGa % amyEaaaa!3DBF! $$
where $k$ is the usual constant of proportionality. Suppose a small community has a fixed population of $n$ people. If one infected person is introduced into this community, then it could be argued that $x(t)$ and $y(t)$ are related by $$x + y = n + 1 % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgU % caRiaadMhacqGH9aqpcaWGUbGaey4kaSIaaGymaaaa!3C69! $$ .
Using this last equation to eliminate y in above equation gives us the model:
$$\frac{{dx}}{{dt}} = kx(n + 1 - x) % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGKbGaamiEaaqaaiaadsgacaWG0baaaiabg2da9iaadUgacaWG4bGa % aiikaiaad6gacqGHRaWkcaaIXaGaeyOeI0IaamiEaiaacMcaaaa!4294! $$
What I don't understand specifically is their remark...
An obvious initial condition accompanying equation is
$$x(0) = 1 % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacI % cacaaIWaGaaiykaiabg2da9iaaigdaaaa!3AC7! $$
I substituted in dx/dt into the other side of $$\frac{{dx}}{{dt}} = kx(n + 1 - x) % MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGKbGaamiEaaqaaiaadsgacaWG0baaaiabg2da9iaadUgacaWG4bGa % aiikaiaad6gacqGHRaWkcaaIXaGaeyOeI0IaamiEaiaacMcaaaa!4294! $$
but how would you do that without the independent variable $t$ in the equation? Also...when substitution $0$ into $x$, wouldn't the whole thing zero out? Thanks in advance.