10

I am looking for a nice slick way to show

$$\int^1_0 \frac{\tanh^{-1} x}{x} \ln [(1 + x)^3 (1 - x)] \, dx = 0.$$

So far I can only show the result using brute force as follows. Let $$I = \int^1_0 \frac{\tanh^{-1} x}{x} \ln [(1 + x)^3 (1 - x)] \, dx.$$ Since $$\tanh^{-1} x = \frac{1}{2} \ln \left (\frac{1 + x}{1 - x} \right ),$$ the above integral, after rearranging, can be rewritten as $$I = \frac{3}{2} \int^1_0 \frac{\ln^2 (1 + x)}{x} \, dx - \int^1_0 \frac{\ln (1 - x) \ln (1 + x)}{x} \, dx - \frac{1}{2} \int^1_0 \frac{\ln^2 (1 - x)}{x} \, dx.\tag1$$ Each of the above three integrals can be found. The results are: $$\int^1_0 \frac{\ln^2 (1 + x)}{x} \, dx = \frac{1}{4} \zeta (3).$$ For a proof, see here or here. $$\int^1_0 \frac{\ln (1 - x) \ln (1 + x)}{x} \, dx = -\frac{5}{8} \zeta (3).$$ For a proof, see here. And $$\int^1_0 \frac{\ln^2 (1 - x)}{x} \, dx = 2 \zeta (3).$$ For a proof of this last one, see here.

Thus (1) becomes $$\int^1_0 \frac{\tanh^{-1} x}{x} \ln [(1 + x)^3 (1 - x)] \, dx = \frac{3}{8 } \zeta (3) + \frac{5}{8} \zeta (3) - \zeta (3) = 0,$$ as expected.

omegadot
  • 12,364
  • what about the change of variable $y=\dfrac{1-x}{1+x}$? – FDP Jun 12 '19 at 08:26
  • 1
    Your integral is \begin{align}\int^1_0\frac{\ln\left(\frac{16x}{(1+x)^4}\right)\ln x}{1-x^2}, dx\end{align}. \begin{align}\int^1_0\frac{\ln(1+x)\ln x}{1-x^2}, dx\end{align} is not so easy to compute. – FDP Jun 12 '19 at 11:11
  • 1
    The integrand here in fact has an antiderivative that can be expressed in terms of trilogs, dilogs and elementary functions using the integration formula found in this question. This expression isn't quite what most people would describe as "nice", but it certainly could be much worse. The alternative ways of solving the definite integral used in the answers provided below are admittedly slicker. OTOH, having the antiderivative opens the door to computing more general integrals. – David H Jun 22 '19 at 09:25
  • What's the point for the bounty? – FDP Jun 25 '19 at 10:35
  • I tested something actually and in the same time to bring attention, as it was mentioned. – Zacky Jun 28 '19 at 23:03

2 Answers2

12

$$I = \frac12 \int^1_0 \frac{\ln\left(\frac{1+x}{1-x}\right)}{x} \ln ((1 + x)^3 (1 - x)) dx=\frac12 \int_0^1 \frac{(a-b)(3a+b)}{x}dx$$

Where we denoted $a=\ln(1+x)$ and $b=\ln(1-x)$. Now we're going to use the following algebraic expression:

$$(a-b)(3a+b)=(a+b)^2+2(a-b)^2 -4b^2$$

Which is obtained by combining the following expressions:

$$a^2=\frac12(a+b)^2+\frac12(a-b)^2 -b^2,\quad ab=\frac14(a+b)^2-\frac14(a-b)^2\tag 1$$

$$\Rightarrow 2I=\int_0^1 \frac{\ln^2\left(1-x^2\right)}{x}dx +2\int_0^1 \frac{\ln^2\left(\frac{1+x}{1-x}\right)}{x}dx-4\int_0^1 \frac{\ln^2\left(1-x\right)}{x}dx$$

Now we can substitute $x^2\to x$ in the first integral and $\frac{1-x}{1+x}\to x$ for the second one to get:

$$2I=\frac12 \int_0^1 \frac{\ln^2(1-x)}{x}dx+4\int_0^1 \frac{\ln^2 x}{1-x^2}dx-4\int_0^1 \frac{\ln^2(1-x)}{x}dx$$

$$=-\frac72\int_0^1 \frac{\ln^2 (1-x)}{x}dx+4\int_0^1 \frac{\ln^2 x}{1-x^2}dx$$

$$\overset{1-x\to x}=-\frac72\int_0^1 \frac{\ln^2 x}{1-x}dx+\frac72\int_0^1 \frac{\ln^2 x}{1-x}dx=0$$


Above we also used that:

$$\boxed{\int_0^1 \frac{\ln^2 x}{1-x^2}dx=\frac78 \int_0^1 \frac{\ln^2 x}{1-x}dx}$$

Which can be shown as follows:

$${\int_0^1 \frac{\ln^2 x}{1-x}dx}\overset{x\to x^2}=8\int_0^1 \frac{x\ln^2 x}{1-x^2}dx=4{\int_0^1 \frac{\ln^2 x}{1-x}dx}-4\int_0^1 \frac{\ln^2 x}{1+x}dx$$

$$\Rightarrow -3{\int_0^1 \frac{\ln^2 x}{1-x}dx}=-4\int_0^1 \frac{\ln^2 x}{1+x}dx\Rightarrow \boxed{\int_0^1 \frac{\ln^2 x}{1+x}dx=\frac34 \int_0^1 \frac{\ln^2 x}{1-x}dx}$$

$$\Rightarrow \int_0^1 \frac{\ln^2 x}{1-x^2}dx=\frac12 \int_0^1 \frac{\ln^2 x}{1-x}dx+\frac12 \int_0^1 \frac{\ln^2 x}{1+x} dx $$

$$=\frac12\int_0^1 \frac{\ln^2 x}{1-x}dx+ \frac38\int_0^1 \frac{\ln^2 x}{1-x}dx=\frac78 \int_0^1 \frac{\ln^2 x}{1-x}dx$$


Generalization. In a similar fashion we can deal with the following integral:

$$\sf I(m,n,q,p)=\int_0^1 \frac{[m\ln(1+x)+n\ln(1-x)][q\ln(1+x)+p\ln(1-x)]}{x}dx$$

Like from above we will keep $\sf a=\ln(1+x)$ and $\sf b=\ln(1-x)$ and we can write:

$$\sf f=(ma+nb)(qa+pb)=mqa^2+(mp+nq)ab+npb^2$$ Using $(1)$ again we obtain:

$$\sf f=\left(\frac{mq}{2}+\frac{mp+nq}{4}\right)(a+b)^2+\left(\frac{mq}{2}-\frac{mp+nq}{4}\right)(a-b)^2+(np-mq)b^2$$

Furthermore we can write:

$$\sf \int_0^1 \frac{(a+b)^2}{x}dx=\int_0^1 \frac{\ln^2(1-x^2)}{x}dx=\frac12 \int_0^1 \frac{\ln^2 x}{1-x}dx$$

$$\sf \int_0^1 \frac{(a-b)^2}{x}dx=\int_0^1 \frac{\ln^2\left(\frac{1+x}{1-x}\right)}{x}dx=2\int_0^1 \frac{\ln^2 x}{1-x^2}dx=\frac74\int_0^1 \frac{\ln^2 x}{1-x}dx$$

$$\sf \Rightarrow I(m,n,q,p)=\left(\frac{mq}{8}-\frac{5}{16}(mp+nq)+np\right)\int_0^1 \frac{\ln^2 x}{1-x}dx$$

$$=\boxed{\sf \left(\frac{mq}{4}-\frac{5}{8}(mp+nq)+2np\right)\zeta(3)}$$

Zacky
  • 30,116
6

\begin{align}J=\int^1_0 \frac{\tanh^{-1} x}{x} \ln [(1 + x)^3 (1 - x)] \, dx\end{align} Perform the change of variable $y=\dfrac{1-x}{1+x}$, \begin{align}J&=\int^1_0\frac{\ln\left(\frac{16x}{(1+x)^4}\right)\ln x}{1-x^2}\, dx\\ &=4\ln 2\int_0^1\frac{\ln x}{1-x^2}\,dx+\int_0^1\frac{\ln^2 x}{1-x^2}\,dx-4\int_0^1\frac{\ln x\ln(1+x)}{1-x^2}\,dx\\ \end{align}

Define on $[0;1]$ the function $R$ by, \begin{align}R(x)&=\int_0^x \frac{\ln t}{1-t^2}\,dt\\ &=\int_0^1 \frac{x\ln(tx)}{1-t^2x^2}\,dt \end{align} Therefore, \begin{align}K&=\int_0^1\frac{\ln x\ln(1+x)}{1-x^2}\,dx\\ &=\Big[R(x)\ln(1+x)\Big]_0^1-\int_0^1\int_0^1 \frac{x\ln(tx)}{(1-t^2x^2)(1+x)}\,dt\,dx\\ &=\int_0^1 \frac{\ln 2\ln t}{1-t^2}\,dt-\int_0^1\left(\int_0^1 \frac{x\ln t}{(1-t^2x^2)(1+x)}\,dx\right)\,dt-\int_0^1\left(\int_0^1 \frac{x\ln x}{(1-t^2x^2)(1+x)}\,dt\right)\,dx\\ &=\ln 2\int_0^1 \frac{\ln t}{1-t^2}\,dt-\\ &\frac{1}{2}\left(\int_0^1 \frac{\ln t\ln(1+t)}{1-t}\,dt-\int_0^1 \frac{\ln t\ln\left(\frac{1-t}{1+t}\right)}{t}\,dt-\int_0^1 \frac{2\ln 2\ln t}{1-t^2}\,dt+\int_0^1 \frac{\ln(1-t)\ln t}{1+t}\,dt\right)-\\ &\frac{1}{2}\left(\int_0^1 \frac{\ln x\ln(1+x)}{1+x}\,dx-\int_0^1 \frac{\ln x\ln(1-x)}{1+x}\,dx\right)\\ &=2\ln 2\int_0^1 \frac{\ln t}{1-t^2}\,dt-K+\frac{1}{2}\int_0^1 \frac{\ln t\ln\left(\frac{1-t}{1+t}\right)}{t}\,dt \end{align} Therefore, \begin{align}K&=\ln 2\int_0^1 \frac{\ln t}{1-t^2}\,dt+\frac{1}{4}\int_0^1 \frac{\ln t\ln\left(\frac{1-t}{1+t}\right)}{t}\,dt\\ &=\ln 2\int_0^1 \frac{\ln t}{1-t^2}\,dt+\frac{1}{8}\left[\ln^2 t\ln\left(\frac{1-t}{1+t}\right)\right]_0^1+\frac{1}{4}\int_0^1 \frac{\ln^2 t}{1-t^2}\,dt\\ &=\ln 2\int_0^1 \frac{\ln t}{1-t^2}\,dt+\frac{1}{4}\int_0^1 \frac{\ln^2 t}{1-t^2}\,dt\\ \end{align} Therefore, \begin{align}\boxed{J=0}\end{align} NB:

It's easy to deduce that, \begin{align}\int_0^1\frac{\ln x\ln(1+x)}{1-x^2}\,dx=\frac{7}{16}\zeta(3)-\frac{1}{8}\pi^2\ln 2\end{align}

FDP
  • 15,643