$$I = \frac12 \int^1_0 \frac{\ln\left(\frac{1+x}{1-x}\right)}{x} \ln ((1 + x)^3 (1 - x)) dx=\frac12 \int_0^1 \frac{(a-b)(3a+b)}{x}dx$$
Where we denoted $a=\ln(1+x)$ and $b=\ln(1-x)$.
Now we're going to use the following algebraic expression:
$$(a-b)(3a+b)=(a+b)^2+2(a-b)^2 -4b^2$$
Which is obtained by combining the following expressions:
$$a^2=\frac12(a+b)^2+\frac12(a-b)^2 -b^2,\quad ab=\frac14(a+b)^2-\frac14(a-b)^2\tag 1$$
$$\Rightarrow 2I=\int_0^1 \frac{\ln^2\left(1-x^2\right)}{x}dx +2\int_0^1 \frac{\ln^2\left(\frac{1+x}{1-x}\right)}{x}dx-4\int_0^1 \frac{\ln^2\left(1-x\right)}{x}dx$$
Now we can substitute $x^2\to x$ in the first integral and $\frac{1-x}{1+x}\to x$ for the second one to get:
$$2I=\frac12 \int_0^1 \frac{\ln^2(1-x)}{x}dx+4\int_0^1 \frac{\ln^2 x}{1-x^2}dx-4\int_0^1 \frac{\ln^2(1-x)}{x}dx$$
$$=-\frac72\int_0^1 \frac{\ln^2 (1-x)}{x}dx+4\int_0^1 \frac{\ln^2 x}{1-x^2}dx$$
$$\overset{1-x\to x}=-\frac72\int_0^1 \frac{\ln^2 x}{1-x}dx+\frac72\int_0^1 \frac{\ln^2 x}{1-x}dx=0$$
Above we also used that:
$$\boxed{\int_0^1 \frac{\ln^2 x}{1-x^2}dx=\frac78 \int_0^1 \frac{\ln^2 x}{1-x}dx}$$
Which can be shown as follows:
$${\int_0^1 \frac{\ln^2 x}{1-x}dx}\overset{x\to x^2}=8\int_0^1 \frac{x\ln^2 x}{1-x^2}dx=4{\int_0^1 \frac{\ln^2 x}{1-x}dx}-4\int_0^1 \frac{\ln^2 x}{1+x}dx$$
$$\Rightarrow -3{\int_0^1 \frac{\ln^2 x}{1-x}dx}=-4\int_0^1 \frac{\ln^2 x}{1+x}dx\Rightarrow \boxed{\int_0^1 \frac{\ln^2 x}{1+x}dx=\frac34 \int_0^1 \frac{\ln^2 x}{1-x}dx}$$
$$\Rightarrow \int_0^1 \frac{\ln^2 x}{1-x^2}dx=\frac12 \int_0^1 \frac{\ln^2 x}{1-x}dx+\frac12 \int_0^1 \frac{\ln^2 x}{1+x} dx $$
$$=\frac12\int_0^1 \frac{\ln^2 x}{1-x}dx+ \frac38\int_0^1 \frac{\ln^2 x}{1-x}dx=\frac78 \int_0^1 \frac{\ln^2 x}{1-x}dx$$
Generalization. In a similar fashion we can deal with the following integral:
$$\sf I(m,n,q,p)=\int_0^1 \frac{[m\ln(1+x)+n\ln(1-x)][q\ln(1+x)+p\ln(1-x)]}{x}dx$$
Like from above we will keep $\sf a=\ln(1+x)$ and $\sf b=\ln(1-x)$ and we can write:
$$\sf f=(ma+nb)(qa+pb)=mqa^2+(mp+nq)ab+npb^2$$
Using $(1)$ again we obtain:
$$\sf f=\left(\frac{mq}{2}+\frac{mp+nq}{4}\right)(a+b)^2+\left(\frac{mq}{2}-\frac{mp+nq}{4}\right)(a-b)^2+(np-mq)b^2$$
Furthermore we can write:
$$\sf \int_0^1 \frac{(a+b)^2}{x}dx=\int_0^1 \frac{\ln^2(1-x^2)}{x}dx=\frac12 \int_0^1 \frac{\ln^2 x}{1-x}dx$$
$$\sf \int_0^1 \frac{(a-b)^2}{x}dx=\int_0^1 \frac{\ln^2\left(\frac{1+x}{1-x}\right)}{x}dx=2\int_0^1 \frac{\ln^2 x}{1-x^2}dx=\frac74\int_0^1 \frac{\ln^2 x}{1-x}dx$$
$$\sf \Rightarrow I(m,n,q,p)=\left(\frac{mq}{8}-\frac{5}{16}(mp+nq)+np\right)\int_0^1 \frac{\ln^2 x}{1-x}dx$$
$$=\boxed{\sf \left(\frac{mq}{4}-\frac{5}{8}(mp+nq)+2np\right)\zeta(3)}$$