Calculate the following actions:
$(i)$ Find an action of the group $GL(n,\mathbb{R})$ on the Euclidean space $\mathbb{R}^n$.
$(ii)$ Find an action of the group $GL(n,\mathbb{C})$ on the Euclidean space $\mathbb{C}^n$.
$(iii)$ Find an action of the group $\operatorname{Aut}(\mathbb{Z})$ on the Euclidean space $\mathbb{C}^n$.
Answer:
$(i)$
Let $A \in GL(n, \mathbb{R})$ and $ v \in \mathbb{R}^n$, then the action is defined by $A \cdot v=Av$
i.e, the group act as a linear transformation.
$(ii)$
The similar action can be described in this case also.
$(iii)$
We know $ \operatorname{Aut}(\mathbb{Z})=\{1,-1\}$.
Also the automorphism group $Aut(G)$ acts on $G$ by $ \psi \cdot g=\psi(g), \ \ \psi \in Aut(G)$ and $g \in G$.
But I do not know what is the action of $\operatorname{Aut}(\mathbb{Z})$ on $\mathbb{C}^n$ .
Is it Frobenius action or something else?
Kindly explain and answer this part $(iii)$.