Let $\{V_n\}$ be a sequence of open and dense subsets of $\mathbb R^N$ . Set $$V =\bigcap_{n\in \mathbb N} V_n$$. Which of the following statements are true?
a. $V \neq ∅.$
b. $V$ is an open set.
c.$ V$ is dense in $\mathbb R^N$
My Try:- (a)We have $V_n^o=V_n$ and $\overline {V_n}=X ,\forall n\in \mathbb N$. Consider $V =\bigcap_{n\in \mathbb N} V_n$. It is enough to prove that $X\setminus V\neq X.$
$$X\setminus V= X\setminus \bigcap_{n\in \mathbb N} V_n=X\setminus \bigcap_{n\in \mathbb N} V_n^o=\bigcup_{n\in \mathbb N}\overline{X \setminus V_n}$$
(b)Enough to prove that $X\setminus V$ is closed $\overline{X\setminus V}=\overline{X\setminus \bigcap_{n\in \mathbb N} V_n}=\overline{X\setminus \bigcap_{n\in \mathbb N} V_n^o}=\overline{\bigcup_{n\in \mathbb N}\overline{X \setminus V_n}}=\bigcup_{n\in \mathbb N}\overline{\overline{X \setminus V_n}}=\bigcup_{n\in \mathbb N}{X \setminus V_n}=X\setminus V \implies X\setminus V$ is a closed set. So, $V$ is open. ($\because$ Closure of the union = Union of closures)
(c)$\overline{V}= \overline{\bigcap_{n\in \mathbb N} V_n}\subseteq \bigcap_{n\in \mathbb N}\overline V_n=X.$ How do I prove the reverse inclusion?