For a real-valued random variable $X \geq 0$,
We have $1 - \frac{1}{1+E \left[x\right]} \geq E \left[ 1 - \frac{1}{1+x} \right]$ (Jensen's inequality).
We want to get a tight constant gap between $1 - \frac{1}{1+E \left[x\right]}$ and $E \left[ 1 - \frac{1}{1+x} \right]$, i.e., $ \lvert 1 - \frac{1}{1+E \left[x\right]} - E \left[ 1 - \frac{1}{1+x} \right] \rvert \leq \epsilon_0$.
Any hints for this inequality?