Show that, whatever the value of $\theta$, the expression
$$a \sin^2 \theta + b \sin \theta \cos \theta + c \cos^2 \theta\ $$
Lies between
$$\dfrac{a+c}{2} \pm \dfrac 12\sqrt{ b^2 + (a-c)^2} $$
My try:
The given expression can be reduced as sum of sine functions as:
$$(a-c) \sin^2 \theta + \dfrac b2 \sin 2 \theta + c \tag{*} $$
Now, there is one way to take everything as a function of $\theta$ and get the expression in the form of $ a \sin \theta + b \cos \theta = c$ and dividing it by $ \sqrt{ a^2 + c^2} $ both sides, but square in sine function is a big problem, also both have different arguments.
Other way, I can think of is taking $ \tan \dfrac \theta 2 = t$ and getting sine and cosine function as $ \sin \theta = \dfrac{ 2t}{1+t^2} $ while cosine function as $ \dfrac{ 1-t^2} {1+t^2}$ solving. So getting $(*)$ as a function of $t$, and simplifying we get,
$$ f(t) = \dfrac{2 Rt + 2 R t^3 + R_0 t - R_0 t^3}{1+t^4 + 2t^2} + c\tag{1}$$
For $R_0 = 2b, R = (a-c)$ , but this is where the problem kicks in!, The Range of given fraction seems $ (-\infty,+ \infty)$ and is not bounded!
So what's the problem here? Can it be solved?
Thanks :)
Edit : I'd like to thank @kaviramamurthy for pointing out that as $t \rightarrow \pm \infty, f(t) \rightarrow c$. That's a mistake here.