Let $R^2$ be the plane, and let G act on it with orientation preserving homeomorphisms, and assume that
- every orbit of G is a discrete subset in $R^2$
- G acts freely: $(\forall g \in G, g \neq e)$, $(\forall x \in R^2)$ $xg \neq x$.
Is it true that $R^2/G$ is a manifold with the factor topology, and G determines a covering to it?
In EMS: Geometry II$^1$, it is stated in a slightly more general way:
If $\Gamma$ is a discrete group of orientation-preserving homeomorphisms of a surface $X$, then the mapping it: $\pi: X \rightarrow X/\Gamma$ is a ramified covering (Kerekjarto [1923]$^2$)
So the statement may be true. But the source is a German textbook. Can anyone prove it, and/or give English sources, or provide a counter example?
1: Gamkrelidze, R. V. (ed.); Vinberg, E. B. (ed.), Geometry II: spaces of constant curvature. Transl. from the Russian by V. Minachin, Encyclopaedia of Mathematical Sciences. 29. Berlin: Springer-Verlag. 254 p. (1993). ZBL0786.00008.
2: von Kerékjártó, B., Vorlesungen über Topologie. I.: Flächentopologie. Mit 80 Textfiguren., Berlin: J. Springer, (Die Grundlehren der mathematischen Wissenschaften. Bd. 8.) VII u. 270 S. gr. $8^\circ$ (1923). ZBL49.0396.07.).