$\int e^x\sin(x)dx$
$= e^x\sin(x) - \int e^x\cos(x)dx$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space$(integration by parts with $u = \sin(x) , v' = e^x$ )
$= e^x\sin(x) - (e^x\cos(x)-\int-e^x\sin(x)dx)$ $\space\space\space\space\space\space\space\space$(integration by parts with $u = \cos(x) , v' = e^x$ )
$= e^x(\sin(x)-\cos(x))-\int e^x\sin(x)dx$
$\implies \int e^x\sin(x)dx = e^x(\sin(x)-\cos(x))-\int e^x\sin(x)dx$
$\iff 2\int e^x\sin(x)dx = e^x(\sin(x)-\cos(x))$
$\iff \int e^x\sin(x)dx = \frac{e^x(\sin(x)-\cos(x))}{2}$
But this can't be correct. Why is the $+C$ missing?