$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\sum_{X = 0}^{10}X{10 \choose X}p^{X}
\pars{1 - p}^{10 - X}} =
\left.\pars{1 - p}^{10}\sum_{X = 0}^{10}X
{10 \choose X}\alpha^{X}
\,\right\vert_{\ \alpha\ =\ p/\pars{1 - p}}
\\[5mm] = &\
\left.\pars{1 - p}^{10}\,\alpha\,\partiald{}{\alpha}\sum_{X = 0}^{10}{10 \choose X}\alpha^{X}
\,\right\vert_{\ \alpha\ =\ p/\pars{1 - p}}
\\[5mm] = &\
\left.\pars{1 - p}^{10}\,{p \over 1 - p}\,\partiald{\pars{1 + \alpha}^{10}}{\alpha}
\,\right\vert_{\ \alpha\ =\ p/\pars{1 - p}}
\\[5mm] = &\
\pars{1 - p}^{9}\, p\bracks{10\pars{1 + {p \over 1 -p}}^{9}} =
\bbx{10p}
\end{align}