Here's an option
Commutation rules
I'm not aware of a fast way of proving this, other than actually calculate all the products directly, but in any case it is fairly straightforward to show that ([ab]using Einstein's notation)
\begin{eqnarray}
[\sigma_a, \sigma_b] &=& 2i\epsilon_{abc}\sigma_c \\
\{\sigma_a, \sigma_b \} &=& 2 \delta_{ab}I \tag{1}
\end{eqnarray}
From here note that
\begin{eqnarray}
[\sigma_a,\sigma_b] +\{\sigma_a, \sigma_b \} &=& (\sigma_a\sigma_b - \sigma_b\sigma_a) + (\sigma_a \sigma_b + \sigma_a \sigma_b) \\
2i\epsilon_{abc}\sigma_c + 2 \delta_{ab}I &=& 2\sigma_a \sigma_b \\
\sigma_a \sigma_b &=& \delta_{ab}I + i\epsilon_{abc}\sigma_c \tag{2}
\end{eqnarray}
Vector product
Now consider two vectors ${\bf u}$ and ${\bf v}$ and multiply both sides of Eqn. (2) by their components, contracting indices leads to
\begin{eqnarray}
(u_a v_b) \sigma_a \sigma_b &=& (u_a v_b) \delta_{ab} I + i(u_a v_b) \epsilon_{abc} \sigma_c \\
(u_a \sigma_a) (v_b \sigma_b) &=& u_a v_a I + i (\epsilon_{abc} u_a v_b) \sigma_c \\
({\bf u}\cdot \mathbf{\sigma}) ({\bf v}\cdot \mathbf{\sigma}) &=& ({\bf u}\cdot {\bf v})I + i ({\bf u}\times {\bf v})_c \sigma_c \\
({\bf u}\cdot \mathbf{\sigma}) ({\bf v}\cdot \mathbf{\sigma})&=& ({\bf u}\cdot {\bf v})I + i ({\bf u}\times {\bf v}) \cdot \sigma \tag{3}
\end{eqnarray}
Set ${\bf u} = {\bf v} = \hat{\bf n}$ in the last equation, you will get
$$
({\bf u}\cdot \mathbf{\sigma})^2 = I \tag{4}
$$
And from this it is trivial to see
\begin{eqnarray}
({\bf u}\cdot \mathbf{\sigma})^{2k} &=& I \\
({\bf u}\cdot \mathbf{\sigma})^{2k + 1} &=& ({\bf u}\cdot \mathbf{\sigma}) ~~~\mbox{for}~~~ k = 0,1,\cdots \tag{5}
\end{eqnarray}
Putting everything together
\begin{eqnarray}
e^{i\theta \hat{\bf u}\cdot \sigma} &=& \sum_{k = 0}^{+\infty} \frac{(i\theta)^k}{k!}(\hat{\bf u}\cdot \sigma)^k \\
&=& \sum_{k = 0}^{+\infty} \frac{i^{2k}\theta^{2k}}{(2k)!}(\hat{\bf u}\cdot \sigma)^{2k} + \sum_{k = 0}^{+\infty} \frac{i^{2k+1}\theta^{2k+1}}{(2k+1)!}(\hat{\bf u}\cdot \sigma)^{2k+1} \\
&\stackrel{(5)}{=}& \sum_{k = 0}^{+\infty} \frac{(-1)^k\theta^{2k}}{(2k)!}I + \sum_{k = 0}^{+\infty} \frac{i(-1)^k\theta^{2k + 1}}{(2k + 1)!}(\hat{\bf u}\cdot \sigma) \\
&=& \cos \theta I + i(\hat{\bf u}\cdot \sigma) \sin \theta
\end{eqnarray}